Exp_Mat07_Alu

44 Tema 10 Componente numérico-variacional Números enteros Potenciación de números enteros La panela es un producto de la canasta familiar colombiana. Se suele empacar en bolsas de 6 pastillas. Para facilitar su distribución, se empacan 6 bolsas en una caja para los comerciantes que desean llevar una gran cantidad. Por ejemplo, don Julio llevó 6 cajas de panela para vender en su supermercado. ¿Cuántas pastillas de panela llevó en total? Para responder esta pregunta, es necesario averiguar cuántas pastillas de panela hay en una caja. Entonces, multiplicamos las 6 pastillas de una bolsa por las 6 bolsas que hay en una caja: 6 × 6 = 36. Esto significa que en una caja hay 36 pastillas de panela. Ahora, averiguamos cuántas pastillas de panela lleva don Julio en 6 cajas de panela multiplicando las 36 pastillas que hay en una caja por las 6 cajas de panela: 36 × 6 = 216. Esto significa que don Julio lleva 216 pastillas de panela. Esta situación la podemos expresar así: 6 × 6 × 6 = 216 Como el factor 6 se repite tres veces, esta multiplicación se puede expresar de forma simplificada usando la notación de potenciación . a. ¿Cuál es el resultado de (– 4) ∙ (– 4) ∙ (– 4) ? b. ¿Cuál es el producto de (– 3) × (– 3) × (– 3) × (– 3) ? c. ¿Es lo mismo 3 veces 7 que 7 multiplicado por 3? La potenciación es la operación que expresa el producto de un mismo factor cierto número de veces. Ejemplo 1 Calculemos las siguientes potencias: Potencia indicada Desarrollo Potencia 2 6 2 × 2 × 2 × 2 × 2 × 2 64 (–4) 5 (–4) × (–4) × (–4) × (–4) × (–4) –1 024 (–7) 4 (–7) × (–7) × (–7) × (–7) 2 401 Tabla 1 Para comprender ¿Qué ocurre cuando elevamos un número entero a la 1? Respuesta Todo número entero como base y cuyo exponente es 1, la potencia es igual al mismo número entero. Es decir, siendo a un número entero, a 1 = a . Por ejemplo, 8 1 = 8 y (–7) 1 = –7. Alerta (–2) 4 ≠–2 4 , ya que (–2) 4 corresponde a –2 elevado a la 4 y –2 4 representa el opuesto de 2 4 . Así, tenemos que (–2) 4 = 16 y –2 4 = –16. En la potenciación, identificamos los siguientes términos: exponente potencia n veces base … a a a a a a b n # # # # # = = En la situación inicial, la base sería 6, el exponente sería 3, que corresponde a las veces que se repite la base y el producto, llamado potencia sería 216. Es decir, 6 3 = 216. Saberes previos

RkJQdWJsaXNoZXIy MTkzODMz